Psoroptes Mites and Mule Deer (Odocoileus hemionus): Additional Notes from the San Bernardino Mountains, California

Vernon C. Bleich
Idaho State University, vcbleich@gmail.com

Follow this and additional works at: http://scholar.oxy.edu/scas

Part of the Life Sciences Commons

Recommended Citation
Available at: http://scholar.oxy.edu/scas/vol113/iss2/4

This Research Note is brought to you for free and open access by OxyScholar. It has been accepted for inclusion in Bulletin of the Southern California Academy of Sciences by an authorized administrator of OxyScholar. For more information, please contact cdla@oxy.edu.
Psoroptes Mites and Mule Deer (Odocoileus hemionus): Additional Notes from the San Bernardino Mountains, California

Cover Page Footnote
We thank B. Adams, B. Clark, A. Hunter, R. Teagle and T. Glenner — as well as numerous other CDFW personnel — and S. deJesus (Landells Aviation) for help capturing and handling study animals; T. Evans (CDFW) for conducting telemetry flights; and K. Jones and L. Konde (CDFW) for careful record-keeping and archiving of relevant data. We thank D. Shumway and D. Rib (Mitsubishi Cement Corporation), and D. Anderson (Specialty Minerals Corporation) for assistance with logistics and arranging for access to private property. Financial support for this research and for manuscript preparation was provided by the Mitsubishi Cement Corporation, CDFW, Granite Bay Chapter of Safari Club International, and the Eastern Sierra Center for Applied Population Ecology. This is Professional Paper 100 from the Eastern Sierra Center for Applied Population Ecology.

This research note is available in Bulletin of the Southern California Academy of Sciences: http://scholar.oxy.edu/scas/vol113/iss2/4
Psoroptic scabies is caused by a mite (Psoroptes sp., Asghar et al., 2011; but, see Zahler et al. 2000) and affects bighorn sheep (Ovis canadensis) and cattle in the western United States (Singer et al. 1997). Similar to other diseases shared by native and domestic animals, psoroptic scabies has implications for the animal production industry and the health and conservation of wild ungulates (Roug et al. 2012). Psoroptes mites previously have been detected on mule deer (Odocoileus hemionus) sympatric with a population of desert bighorn sheep in New Mexico (Lange et al. 1980; Hoban 1990; Logan and Sweanor 2001) that was impacted substantially by that ectoparasite (Boyce and Brown 1991). Mite infestations among desert bighorn sheep in California are widespread and commonplace (Mazet et al. 1992; Clark et al. 1993), yet do not appear to result in severe clinical disease (Mazet et al. 1992).

Several of the populations of bighorn sheep examined by other investigators (Mazet et al. 1992; Clark et al. 1993) were sympatric with mule deer, as was the situation in the San Bernardino Mountains, California (Schaefer et al. 2000). Singer et al. (1997) investigated the prevalence of Psoroptes infestation among those species and domestic cattle in the southeastern part of that mountain range. Mule deer and bighorn sheep also were sympatric on the north-facing slope of the San Bernardino Mountains (Cushenbury Canyon, Bleich et al. 2009; Abella et al. 2011), and often share chaparral-dominated habitats in other parts of the transverse ranges and in the peninsular ranges of California (Bleich and Holl 1982). Psoroptic scabies was present in bighorn sheep captured in the San Bernardino Mountains at Cushenbury Canyon (Clark et al. 1988) and near Mt. San Gorgonio (Singer et al. 1997).

Singer et al. (1997) reported an absence of Psoroptes infestation among 15 mule deer captured near Mt. San Gorgonio. The small number of deer examined, however, limits the ability to make a conclusion based on negative detection of a pathogen or other anomaly (Hanley and Lippman-Hand 1983; Dougherty and McInerney 2009; Ho 2009). Singer et al. (1997) recognized a need to replicate results and recommended further investigation of pathogen-sharing among sympatric populations of mule deer and bighorn sheep. Therefore, we sampled additional mule deer from the San Bernardino Mountains to further explore the question of whether Psoroptes mites infest mule deer...
that are sympatric with bighorn sheep in that range, as originally posited by Singer et al. (1997).

We captured mule deer in the vicinity of Cushenbury Canyon during 2002 and 2004. We used a net-gun fired from a helicopter (Jessup et al. 1988); deer were physically restrained, and some individuals were transported by helicopter to a central base for processing (Monteith et al. 2011; Monteith et al. 2013), but those caught 10 km from that base were processed in the field. Each individual received prophylactic injections of penicillin (Sterile Penicillin Procaine G; Aspen Veterinary Resources, Liberty, MO, USA), Vitamin E (Vital-E®; Schering-Plough Animal Health Corporation, Summit, NJ, USA), and Vitamin E and Selenium (MU-SE®; Schering-Plough Animal Health Corporation, Summit, NJ, USA), and each was fitted with a VHF telemetry collar prior to release. Capture and handling procedures followed protocols developed by the California Department of Fish and Wildlife (CDFW) (Jessup et al. 1986) and were consistent with guidelines for acceptable field methods adopted by the American Society of Mammalogists (Animal Care and Use Committee 1998).

We conducted a thorough physical examination of each deer in an effort to detect clinical evidence of mite infestation, paying careful attention to the ears as described by Welsh and Bunch (1983). We searched both ears of each individual for evidence of dermatitis in the form of exfoliated epidermis, crusted serous exudate, or blockage of the meatus with hard, waxy material that would be consistent with clinical evidence of *Psoroptes* infestation (Welsh and Bunch 1983). We also collected deep ear swabs (Singer et al. 1997), which were examined microscopically for presence of *Psoroptes* mites. None of the mule deer captured in 2002 (n = 16) or 2004 (n = 18) revealed clinical evidence of *Psoroptes* infestation. Further, deep ear swabs collected from mule deer captured during September 2002 and later examined microscopically (n = 5) were negative for mites (K. R. Jones, CDFW, in litt., 14 March 2013).

It will be possible to establish an unambiguous absence of *Psoroptes* infestation in mule deer in the San Bernardino Mountains only if every individual can be sampled (Wehausen 1987). Nevertheless, using the method developed by Wehausen (1987), it can be stated with a high degree of confidence \(x = 83.33\% \pm 4.023 \) [95% CI; Table 1] that the infestation rate during each sampling period was \(\leq 10\% \). Moreover, assuming that the infestation rates in each of the 3 sampling periods were independent, it is highly likely \(P = 0.9945; 1-[1-0.81] \times [1-0.83] \times [1-0.87] \) that the infestation rate among the populations of mule deer examined was \(\leq 10\% \).

Table 1. Sample size and associated level of confidence that the prevalence \(P \) of *Psoroptes* mites was \(\leq 10\% \) in two proximate populations of mule deer, each numbering an estimated 200 individuals and sympatric with bighorn sheep in the San Bernardino Mountains, San Bernardino County, California, 1991–2004.

<table>
<thead>
<tr>
<th>Source</th>
<th>Date</th>
<th>Approximate study centroid of area(^a)</th>
<th>(N)</th>
<th>Level of confidence (P \leq 0.10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singer et al. (1997)</td>
<td>1991–94</td>
<td>34°04'N, 116°39'W</td>
<td>15</td>
<td>81%</td>
</tr>
<tr>
<td>This study</td>
<td>2002</td>
<td>34°21'N, 116°55'W</td>
<td>16</td>
<td>83%</td>
</tr>
<tr>
<td>This study</td>
<td>2004</td>
<td>34°21'N, 116°55'W</td>
<td>18</td>
<td>86%</td>
</tr>
</tbody>
</table>

\(^a\) Latitude and longitude, WGS84 datum.
\(^b\) Probability of exposure estimated according to the method of Wehausen (1987).
Our failure to detect clinical evidence of psoroptic scabies or the presence of *Psoroptes* mites is consistent with the results of Singer et al. (1997), who detected no evidence of *Psoroptes* infestation among the mule deer they examined. Given the similarity of the level of confidence for each sampling effort, it is entirely plausible that no deer in the geographic areas investigated by us or Singer et al. (1997) were infested with mites. Our results provide additional evidence, as emphasized by Singer et al. (1997), that mule deer are an unlikely source of *Psoroptes* mites that infest bighorn sheep inhabiting the San Bernardino Mountains. Nevertheless, we cannot rule out other species of wildlife as potential sources of infestation of bighorn sheep by *Psoroptes* mites.

We thank B. Adams, B. Clark, A. Hunter, R. Teagle and T. Glenner — as well as numerous other CDFW personnel — and S. deJesus (Landells Aviation) for help capturing and handling study animals; T. Evans (CDFW) for conducting telemetry flights; and K. Jones and L. Konde (CDFW) for careful record-keeping and archiving of relevant data. We thank D. Shumway and D. Rib (Mitsubishi Cement Corporation), and D. Anderson (Specialty Minerals Corporation) for assistance with logistics and arranging for access to private property. Financial support for this research and for manuscript preparation was provided by the Mitsubishi Cement Corporation, CDFW, Granite Bay Chapter of Safari Club International, and the Eastern Sierra Center for Applied Population Ecology. This is Professional Paper 100 from the Eastern Sierra Center for Applied Population Ecology.

Literature Cited

