Title

Enantioselective Synthesis of (-)-Coniine

Authors

Jeffrey Cannon

Document Type

Article

Publication Date

2006

Abstract

(-)-Coniine is a toxic six-membered ring alkaloid that is isolated from spotted hemlock. The molecule has been a popular synthetic target for showcasing new methods of enantioselective synthesis. Our own strategy for the synthesis of (-)-coniine blends the enantioselectivity of an enzyme with the rich organometallic chemistry of pi-allyl palladium and ring-closing metathesis. The enzyme, oxynitrilase, is an especially robust enzyme found in raw almonds. This enzyme is able to produce the corresponding unsaturated cyanohydrin of trans-2-hexenal in greater than 99% enantiomeric excess. The cyano moiety is then converted to the ethyl ester and the hydroxy function transformed to an acetate leaving group in preparation for a subsequent palladium-catalyzed allylic substitution step. Importantly, the stereochemistry is conserved throughout this process. Exposure to palladium(0) initiates a novel substitutive 1,3-chiral transfer where the crucial 3-butenylamino fragment is incorporated at the gamma-position of the alpha,beta-unsaturated ester with full enantiofidelity. The unsaturated amine then undergoes an intramolecular Grubbs-catalyzed metathesis to form an unsaturated piperidine ring system. Catalytic hydrogenation over Pd/C affords the desired natural product in high enantiomeric excess and yield. The successful synthesis of (-)-coniine provides proof-of-concept for our sequential enzymatic-organometallic strategy. This unique methodology has widespread applications in the synthesis of other biologically important piperidines.

Advisor

Donald Deardorff

Department

chem

Support

Pfizer Summer Undergraduate Research Fellowship

This document is currently not available here.

Share

COinS