• Login
    View Item 
    •   Oxy Scholar Home
    • Bulletin of the Southern California Academy of Sciences
    • Bulletin of the Southern California Academy of Sciences
    • View Item
    •   Oxy Scholar Home
    • Bulletin of the Southern California Academy of Sciences
    • Bulletin of the Southern California Academy of Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Organisms Living Around Energized Submarine Power Cables, Pipe, and Natural Sea Floor in the Inshore waters of Southern California

    Thumbnail
    View/Open
    Love_et_al_EMF_Shallow.noack.noabst.ep.doc (5.256Mb)
    i0038_3872_116_2_61.pdf (1023.Kb)
    Subject
    EMF; electromagnetic fields; renewable energy
    Author
    Love, Milton S.; Nishimoto, Mary M.; Clark, Scott; McCrea, Merit; Bull, Ann Scarborough
    Journal Title
    Scas: Bulletin of the Southern California Academy of Sciences
    Volume
    116
    Issue
    scas/vol116/iss2; 2
    Metadata
    Show full item record
    URI
    https://scholar.oxy.edu/handle/20.500.12711/10796
    Abstract
    Between 1 February 2012 and 26 February 2014 using scuba, we surveyed the fishes, invertebrates, and macrophytes living on two energized submarine power cables, an adjacent pipe, and nearby natural habitat in southern California at bottom depths of 10–11 m and 13–14 m. Over the course of the study, average electromagnetic field (EMF) levels at the two cables (A and B) were statistically similar (Cable A = 73.0µT, Cable B = 91.4µT) and were much higher at these two cables than at either the pipe (average = 0.5µT) or sand (0µT). Overall, our study demonstrated that 1) the fish and invertebrate communities on cables, pipe, and natural habitat strongly overlapped and 2) there were differences between the shallower and deeper fish and invertebrate communities. We saw no evidence that fishes or invertebrates are either preferentially attracted to, or repelled by, the EMF emitted by the cables. Any differences in the fish or invertebrate densities between cables, pipe, and natural habitat taxa were most likely due to the differences in the physical characteristics of these habitats. As with the fishes and invertebrates, macrophytes did not appear to be responding to the EMF emitted by the cables. Rather, it is likely that differences in the plant communities were driven by site depth and habitat type.
    Collections
    • Bulletin of the Southern California Academy of Sciences

    Browse

    All of Oxy ScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsJournal TitleJournal IssueThis CollectionBy Issue DateAuthorsTitlesSubjectsJournal TitleJournal Issue

    My Account

    LoginRegister

    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV