• Login
    View Item 
    •   Oxy Scholar Home
    • Biochemistry
    • Biochemistry URC Student Scholarship
    • View Item
    •   Oxy Scholar Home
    • Biochemistry
    • Biochemistry URC Student Scholarship
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Kinetic Profile Of Human Enzyme Glucose-6-Phosphate Dehydrogenase.

    Thumbnail
    Author
    Georgescu, Radu
    Issue
    urc_student; urc_student
    Date
    1999-01-01 0:00
    Metadata
    Show full item record
    URI
    https://scholar.oxy.edu/handle/20.500.12711/288
    Abstract
    Glucose-6-phosphate dehydrogenase (G6PD) oxidizes glucose-6- phosphate (G6P) to 6-phosphoglucono-d-lactone (6PGL) and reduces nicotinamide adenine dinucleotide phosphate (NADP+) to NADPH. Detailed studies of human G6PD are hindered by difficulties in purifying significant quantities of this enzyme for initial-rate procedures. In addition, the instability of 6PGL prevents a kinetic analysis of the reverse reaction. A novel method of investigating enzymatic properties by visual comparison of mechanism plots with experimental progress curves is proposed here. Selwyn's test was used to rule out the possibility of enzyme inactivation, thus making possible the use of progress curve analysis. A computer spreadsheet was devised to graph three possible ternary mechanisms, random bi-bi, Theorell-Chance (T-C) and ordered bi-bi, on the same system of coordinates with experimental reaction data. Each graph was plotted by Euler's method of numerical integration from corresponding ordinary differential equations describing the cited mechanisms, while the progress curves were obtained by monitoring the absorbance of NADPH at 340 nm. The Solver regression module was used to simultaneously fit 11 simulated curves (repeated for each mechanism) against 11 different experimental progress curves obtained by UV/VIS spectroscopy. This process generated three complete sets of kinetic parameters, which were further analyzed statistically using a Monte-Carlo simulation. The magnitude of the standard errors and simplicity considerations indicate that a T-C mechanism best explains the experimental data.
    Collections
    • Biochemistry URC Student Scholarship

    Browse

    All of Oxy ScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsJournal TitleJournal IssueThis CollectionBy Issue DateAuthorsTitlesSubjectsJournal TitleJournal Issue

    My Account

    LoginRegister

    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV