• Login
    View Item 
    •   Oxy Scholar Home
    • Biochemistry
    • Biochemistry URC Student Scholarship
    • View Item
    •   Oxy Scholar Home
    • Biochemistry
    • Biochemistry URC Student Scholarship
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Glucose-6-Phosphate Dehydrogenase Dimer Interface: Proteolytic Studies with NADP Analogues

    Thumbnail
    Author
    Wachi, Carly
    Issue
    urc_student; urc_student
    Date
    2008-01-01 0:00
    Metadata
    Show full item record
    URI
    https://scholar.oxy.edu/handle/20.500.12711/292
    Abstract
    Glucose-6-phosphate dehydrogenase (G6PDH) catalyzes the first and rate-limiting step of the pentose phosphate pathway, which oxidizes glucose to 6-Phosphoglucono-δ-lactone and reduces NADP to NADPH. G6PDH exists in an equilibrium between its monomer, dimer, and tetramer state.The catalytically active enzyme functions in its dimer conformation. G6PDH has a structural NADP site in proximity to the dimer interface. Functional G6PDH requires the binding of both glucose-6-phosphate (G6P) and NADP, which are believed to hold protective effects in stabilizing G6PDH into its catalytically active conformation. By using limited proteolytic degradation to compare the fragmentation band patterns of substrate-saturated G6PDH and substrate analogue-saturated G6PDH with native G6PDH, it will be possible to observe structural changes around the enzyme?s dimer interface that might lead to changes in it stability. The G6PDH dimer from baker?s yeast, Saccharomyces cerevisiae, will be used as a model system in preparation for work with human G6PDH. In order to spur G6PDH into its catalytic form without beginning catalyst, only NADP will saturate the enzyme. When highly selective proteinases are introduced, G6PDH will be cut into a specific set of fragments, visualized by SDS PAGE. If successful, the experiment would confirm the protective effects of NADP on G6PDH and that G6PDH does undergo a structural change to become functional, which have only been theorized. Subsequently, the fragments could be isolated for sequence analysis that might identify the dimer interface. This could lead to a greater understanding of the dimer interface, the site of mutation occurrence, which causes enzyme deficiency.
    Collections
    • Biochemistry URC Student Scholarship

    Browse

    All of Oxy ScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsJournal TitleJournal IssueThis CollectionBy Issue DateAuthorsTitlesSubjectsJournal TitleJournal Issue

    My Account

    LoginRegister

    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV