• Login
    View Item 
    •   Oxy Scholar Home
    • Biology
    • Biology URC Student Scholarship
    • View Item
    •   Oxy Scholar Home
    • Biology
    • Biology URC Student Scholarship
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Role of Microbial Enzymes in Carbon Degradation in Marine Sediments

    Thumbnail
    Author
    Gruber, Dawn
    Issue
    urc_student; urc_student
    Date
    2008-01-01 0:00
    Metadata
    Show full item record
    URI
    https://scholar.oxy.edu/handle/20.500.12711/516
    Abstract
    The degradation of organic matter in the deep-sea is a critical microbial process that facilitates global carbon cycling and affects all organisms. Typically, deep-sea microbial communities experience very low organic carbon availability, however, at deep-sea whalefalls these bacteria are provided with organic carbon levels ~2000x greater than usual. This creates an ideal environment in which to examine the metabolism of marine microbes and to further understand carbon cycling on and within the deep-sea floor. Only a handful of papers have investigated marine sediments, thus, we first had to develop a method for measuring enzymatic activity. We focused on proteases, enzymes responsible for the breakdown of proteins, one of a number of organic carbon sources in the environment. Protease activity was measured in marine sediments associated with a whalefall at 1800 meters depth in Monterey Bay, collected at zero, three and ten meters distance. As expected, the highest protease activity was found directly under the whalefall and within the top 9cm of sediment. Protease activity was still elevated in samples collected at 17 months, yet almost negligible at 54 months, suggesting that enzymatic breakdown of proteins takes place within a few years of deposition on the sea floor. Molecular analysis of bacterial community composition within these sediments suggests a predominance of heterotrophic bacterial groups, likely responsible for the protease activity. This research allowed us to compare, both metabolically and phylogenetically, the effects of carbon load on deep-sea microbial communities, as well as factors that create and sustain these unique environments.
    Collections
    • Biology URC Student Scholarship

    Browse

    All of Oxy ScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsJournal TitleJournal IssueThis CollectionBy Issue DateAuthorsTitlesSubjectsJournal TitleJournal Issue

    My Account

    LoginRegister

    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV