• Login
    View Item 
    •   Oxy Scholar Home
    • Chemistry
    • Chemistry URC Student Scholarship
    • View Item
    •   Oxy Scholar Home
    • Chemistry
    • Chemistry URC Student Scholarship
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Physical and Chemical Stability of Binary Lipid Mixtures

    Thumbnail
    Author
    Smith, Eric
    Issue
    urc_student; urc_student
    Date
    2008-01-01 0:00
    Metadata
    Show full item record
    URI
    https://scholar.oxy.edu/handle/20.500.12711/697
    Abstract
    In biological membranes, it is thought that lipid heterogeneity and lipid domains play a role in membrane functions, such as protein regulation. Also, chemical stability is a concern with lipid structures such as liposome suspensions used for drug delivery. To test both phase segregation in a partially miscible lipid mixture and its stability, two phospholipids of different acyl chain lengths, DPPC and DAPC are combined to create a model system. Since the chains differ by only four carbon lengths, the driving force for phase separation is relatively small. As a result, the system is expected to approach equilibrium only after a substantial amount of time. Differential scanning calorimetry (DSC) is used to observe how these domains form and to determine whether a stable equilibrium state emerges. In this mixed system, significant changes in the main transition temperature (Tm) suggest that the composition of the bilayer rearranges with time. Furthermore, changes in DSC peak shape and hysteresis between the heating and cooling scans provide evidence that the reversibility of the Tm changes over time. In addition, 31P nuclear magnetic resonance (NMR) spectroscopy results suggest that the bilayer transforms to a different macroscopic shape, such as vesicles or micelles. This is reinforced by the change in color from a milky-white solution to clear over the course of the experiment. 1H NMR and DSC experiments on unmixed pure lipids suggest that the main factor driving the changes in the mixed system is pH and temperature dependent hydrolysis, not phase separation.
    Collections
    • Chemistry URC Student Scholarship

    Browse

    All of Oxy ScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsJournal TitleJournal IssueThis CollectionBy Issue DateAuthorsTitlesSubjectsJournal TitleJournal Issue

    My Account

    LoginRegister

    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV