• Login
    View Item 
    •   Oxy Scholar Home
    • Chemistry
    • Chemistry URC Student Scholarship
    • View Item
    •   Oxy Scholar Home
    • Chemistry
    • Chemistry URC Student Scholarship
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Redox Chemistry of B12-binding RNA Aptamers

    Thumbnail
    Author
    Willis, Jason
    Issue
    urc_student; urc_student
    Date
    2002-01-01 0:00
    Metadata
    Show full item record
    URI
    https://scholar.oxy.edu/handle/20.500.12711/772
    Abstract
    Vitamin B12 has many biologically important roles in living systems today. It has been found to serve as a cofactor for methyl transferases, and as a reduction/oxidation cofactor for class II ribonucleotide reductases (RNRs). All organisms use RNRs to generate deoxyribonucleic acids from the ribose counterparts. Within the context of the 'RNA world' hypothesis, it is possible that ancient RNA sequences existed which may have catalyzed the same reaction using B12 as a reduction/oxidation (redox) cofactor. Our hope is to study the affect that recently isolated B12 RNA aptamers have on the reduction potential of vitamin B12 (cyanocobalomin). We have tethered 49nt RNA aptamers to a gold electrode surface through hybridization to a thiolated ssDNA monolayer; however, due to the nature of the buffer system the results are inconclusive. A slightly modified approach has been chosen which will use a dsDNA monolayer with a 5? overhang (sticky end). We have developed a random ssDNA library for use in the selection of new B12 aptamers that bind to B12 in a buffer system convenient for electrochemical analysis, and which do so while hybridized to the dsDNA monolayer. The synthesized library has been PCR amplified and preliminary analysis reveals that only 18% (1.1 x 10<sup>15</sup> unique molecules) of the total synthetic yield is available for PCR amplification. Thus, our pool represents only a small fraction of the total number of random sequences possible. Further, through the cloning and sequencing of representatives from the pool, we find that a slight bias exists in the 72nt random sequence towards C and against G. Approximately 11.3mg of RNA was transcribed from this dsDNA library and we are using a portion of this final pool for selection on a B12-agarose column.
    Collections
    • Chemistry URC Student Scholarship

    Browse

    All of Oxy ScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsJournal TitleJournal IssueThis CollectionBy Issue DateAuthorsTitlesSubjectsJournal TitleJournal Issue

    My Account

    LoginRegister

    DSpace software copyright © 2002-2021  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV